Parametric Manifold Learning Via Sparse Multidimensional Scaling
نویسندگان
چکیده
We propose a metric-learning framework for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We employ Siamese networks to solve the problem of least squares multidimensional scaling for generating mappings that preserve geodesic distances on the manifold. In contrast to previous parametric manifold learning methods we show a substantial reduction in training effort enabled by the computation of geodesic distances in a farthest point sampling strategy. Additionally, the use of a network to model the distance-preserving map reduces the complexity of the multidimensional scaling problem and leads to an improved non-local generalization of the manifold compared to analogous non-parametric counterparts. We demonstrate our claims on point-cloud data and on image manifolds and show a numerical analysis of our technique to facilitate a greater understanding of the representational power of neural networks in modeling manifold data.
منابع مشابه
Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations
Non-parametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this non-parametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stick-breaking process are als...
متن کاملSparse and low-rank approximations of large symmetric matrices using biharmonic interpolation
Geodesic distance matrices can reveal shape properties that are largely invariant to non-rigid deformations, and thus are often used to analyze and represent 3-D shapes. However, these matrices grow quadratically with the number of points. Thus for large point sets it is common to use a low-rank approximation to the distance matrix, which fits in memory and can be efficiently analyzed using met...
متن کاملSparse Manifold Alignment
Previous approaches to manifold alignment are based on solving a (generalized) eigenvector problem. We propose a least squares formulation of a class of manifold alignment approaches, which has the potential of scaling better to real-world data sets. Furthermore, the least-squares formulation enables various regularization techniques to be readily incorporated to improve model sparsity and gene...
متن کاملNonlinear Manifold Learning 6.454 Summary
Manifold learning is the process of estimating a low-dimensional structure which underlies a collection of high-dimensional data. Here we review two popular methods for nonlinear dimensionality reduction, locally linear embedding (LLE, [1]) and IsoMap [2]. We also discuss their roots in principal component analysis and multidimensional scaling, and provide a brief comparison of the underlying a...
متن کاملآموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک
In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.06011 شماره
صفحات -
تاریخ انتشار 2017